Assessment 1

Answer questions 1-40. Answer questions outlined in green in your test book. Answer all other questions on the Answer Form.

1 Identify equivalent measures.

Part A

Which measures are equivalent to 10 meters? Mark all that apply.
A 0.01 kilometer
B 1,000 millimeters
C 100 millimeters
D 1,000 centimeters

Part B

Which measures are equivalent to 3 feet? Mark all that apply.

A 36 inches

B 15 inches

C 1 yard

D $\frac{1}{3}$ yard

Part A

Which numbers round to 0.1 when rounded to the nearest tenth? Mark all that apply.
A 0.09
B 0.95
C 0.99
D 1.04

Part B

Which numbers round to 0.02 when rounded to the nearest hundredth? Mark all that apply.
A 0.025
B 0.023
C 0.026
D 0.019

3 Yahir has $\frac{1}{2}$ gallon of iced tea in a pitcher. He plans to pour $\frac{1}{16}$ gallon into a drinking glass.

What fraction of a gallon will Yahir have left in the pitcher?
A $\frac{7}{8}$
B $\frac{7}{16}$
C $\frac{1}{14}$
D $\frac{1}{16}$

4 John bought a rectangular doormat that was $\frac{1}{2}$ meter long and $\frac{3}{10}$ meter wide.

Part A

Draw a diagram to show the area of the mat.

Part B

What is the area of the doormat?
Answer \qquad square meter

Part C

Suppose the doormat has a design on it that divides it into squares measuring $\frac{1}{10}$ meter by $\frac{1}{10}$ meter. How many squares is the doormat divided into?

Answer \qquad squares

Part D

Now find the area of the doormat by multiplying the number of squares the doormat is divided into by the area of one square.

Show your work.

Answer

How does the area you found here compare with the area you found in Part B? Explain why it is either the same or different.
\qquad
\qquad
\qquad
\qquad

5 The inside of a cooler is in the shape of a rectangular prism. The inside of the cooler is 20 inches wide, 14 inches high, and 12 inches long. What is the volume, in cubic inches, of the inside of the cooler?

$$
V=l \times w \times h
$$

Show your work.
\qquad cubic inches

6 Which expressions represent the statement "three minus the product of seven and four"? Mark all that apply.

A $3-(7 \times 4)$
B $(7 \times 4)-3$
C $3-(4 \div 7)$
D $3-(4 \times 7)$
E $(7 \div 4)-3$

Part A

What is the value of the expression $(4 \times 5)+(10 \times 30)$?
A 49
B 90
C 320
D 900

Part B

What is the value of the expression $2 \times(3 \times 5)-(8 \times 3)$?
A 4
B 6
C 21
D 42

8 Ivan has just opened a small coffee shop. He paid a copy store $\$ 0.10$ per copy to make 1,428 copies of the flyer to announce the opening of the shop. Ivan is having 14 of his friends distribute all of the flyers, and he is paying them $\$ 0.25$ for each flyer. He gave each friend the same number of flyers.

Part A

What is the total amount Ivan is paying each friend to distribute his or her share of the flyers?

Show your work.

Answer \$ \qquad

Part B

What is the total cost for making all of the copies and paying all of his friends?

Show your work.

Answer \$ \qquad

9 The locations of four points are shown below.

Part A

Which statements about the points' x-coordinates are true? Mark all that apply.
A The x-coordinate of point L is greater than the x-coordinate of point H.
B The x-coordinate of point C is greater than the x-coordinate of point A.
C The x-coordinate of point H is greater than the x-coordinate of point L.
D The x-coordinate of point A is greater than the x-coordinate of point L.

Part B

Which statements about the points' y-coordinates are true? Mark all that apply.
A The y-coordinate of point C is greater than the y-coordinate of point H.
B The y-coordinate of point H is greater than the y-coordinate of point L.
C The y-coordinate of point L is greater than the y-coordinate of point H.
D The y-coordinate of point A is greater than the y-coordinate of point C.

10 The shaded region in the figure below is $\frac{4}{7}$ unit wide and $\frac{6}{7}$ unit long.

What is the area of the shaded region?

A $\frac{24}{49}$ square unit
B $\frac{25}{49}$ square unit
C $1 \frac{3}{7}$ square units
D $3 \frac{3}{7}$ square units

Part A

What is the product $3,614 \times 272$?
A 983,008
B 980,560
C 958,528
D 956,080

Part B

What is the product $5,891 \times 458$?
A 2,693,956
B 2,698,078
C $2,739,298$
D 2,743,878

12 Amy had homework for math, science, and history. She spent $\frac{1}{3}$ of her time working on math and $\frac{1}{4}$ of her time working on science.

Part A

Amy estimated that she spent $\frac{1}{7}$ of her time on both math and science homework. Without doing any calculations, determine whether or not Amy's estimate is accurate and explain why or why not.
\qquad
\qquad
\qquad
\qquad

Part B
How much of her time did Amy spend working on history?

Show your work.

Answer \qquad

Part C

Did Amy spend more time working on both her math and science homework or on her history homework? Explain.
\qquad
\qquad
\qquad

13 Which expression has the greatest number of zeros when the number is written in standard form?

A $10,000 \times 10^{9}$
B $7,000 \times 10^{9}$
C $\quad 42 \times 10^{12}$
D $\quad 20 \times 10^{10}$

14 The figure below is made of 1-centimeter cubes.

What is the volume of the figure?
A $3 \mathrm{~cm}^{3}$
B $5 \mathrm{~cm}^{3}$
C $\quad 12 \mathrm{~cm}^{3}$
D $\quad 15 \mathrm{~cm}^{3}$

Part A

Which terms describe every rectangle? Mark all that apply.
A square
B quadrilateral
C parallelogram
D equilateral

Part B

Which terms describe every trapezoid? Mark all that apply.
A quadrilateral
B closed figure
C parallelogram
D rectangle

16 Ms. Whittier wrote the following on the board:
the product of 6 and the sum of 4 and 5
She asked the students in her class to write an expression to represent what she wrote.

Part A

Sherry wrote the following expression:
$6 \times 4+5$
Did Sherry write a correct expression? Explain why or why not.

Part B

Write two different expressions to represent what Ms. Whittier wrote. Explain how you know they are both correct.

Part C

Describe how using parentheses in a numerical expression can affect its meaning. Give an example of when you would need to use parentheses in an expression and when you would not need to.

17 Which problem is best modeled by the expression $7 \div \frac{1}{4}$?
A Mr. Lee gave 7 drum lessons yesterday. If each lesson lasted $\frac{1}{4}$ hour, how much time did he spend giving lessons?

B Mr. Lee spent $\frac{1}{4}$ hour teaching a drum lesson. If he spent the same amount of time teaching each of 7 skills, how much time did he spend on each skill?

C Mr. Lee spent 7 hours giving drum lessons yesterday. If each lesson lasted $\frac{1}{4}$ hour, how many lessons did he give?

D Mr. Lee spent 7 hours giving drum lessons yesterday. If he spent $\frac{1}{4}$ of the time working with Marcia, how much time did he spend teaching Marcia?

18 Consider the rules for the two numerical patterns given below.
Pattern A: Start with 0 and add 4 to get the next term.
Pattern B: Start with 0 and add 12 to get the next term.
Which statement describes the relationship between the corresponding terms of the two patterns?

A Each term of Pattern B is three times the corresponding term of Pattern A.
B Each term of Pattern A is three times the corresponding term of Pattern B.
C Each term of Pattern A is 12 more than the corresponding term of Pattern B.
D Each term of Pattern B is 8 more than the corresponding term of Pattern A.

Go On

19 Mrs. Jackson is filling small containers from a large basket of strawberries. She fills each container and then weighs it. She records the weight of each container in pounds and sorts them by weight. The line plot shows the number of containers with each weight.

Part A

What is the total weight of all the containers that weigh $\frac{6}{8}$ pound?
A $\frac{3}{4}$ pound
B $\frac{6}{7}$ pound
C $4 \frac{1}{4}$ pounds
D $4 \frac{1}{2}$ pounds

Part B

Which statements about the data are correct? Mark all that apply.
A The total weight of the two lightest containers is $\frac{5}{8}$ pound.
B The difference in weights between the lightest and heaviest containers is $\frac{5}{8}$ pound.
C Exactly half of the containers weigh more than $\frac{5}{8}$ pound each.
D The total weight of the containers weighing $\frac{4}{8}$ pound is $1 \frac{1}{2}$ pounds.

20 Penn buys 3 large sandwiches to serve at a party. He cuts the sandwiches into equal pieces and serves $\frac{1}{4}$ sandwich to each guest.

Part A

Each of these rectangles represents one whole sandwich. Draw lines in the model to show how Penn divided the sandwiches for his party.

Part B

Penn did not eat any of the sandwiches. Write an equation to represent the number of guests, g, Penn served if he had no leftovers.

Equation \qquad

Part C

To how many guests did Penn serve sandwiches?

Show your work.

Answer \qquad

21 Emiyo writes the multiplication sentence $50 \times 30=1,500$ as a first step in finding the quotient $1,590 \div 30$. She knows that 50 is part of the quotient. Then she writes a second multiplication sentence to find the other part of the quotient to add to 50 . What is the product in the second multiplication sentence Emiyo writes?

Show your work.

Answer

22 For which solid figure can the volume be found by multiplying 3 inches by 8 square inches?
Figures are not drawn to scale.

Go On

23 This year, Ansel earned $\frac{19}{17}$ of what he earned last year. Which conclusion about Ansel's earnings is correct?

A We don't know in which year Ansel earned more because his earnings last year are not given.

B Ansel earned the same this year as last year because $\frac{19}{17}$ is close to 1.
C Ansel earned less this year than last year because $\frac{19}{17}<1$.
D Ansel earned more this year than last year because $\frac{19}{17}>1$.

24 An architect was designing a rectangular room with a length of 16 feet, a width of 14 feet, and a height of 10 feet.

Part A

What is the volume of the room?

Show your work.

Answer \qquad cubic feet

Part B

The architect changed his design and added 2 feet to the length and width of the room. How much greater is the volume of the room in the architect's new design?

Show your work.

Answer \qquad cubic feet

25 Which number is three hundred thirty and seventy-six thousandths?
A 330.0076
B 330.076
C 330.76
D 337.6

26 Gary wanted to read a 307-page book in 10 nights. On the first night, he read 30 pages. Gary says he will need to read 31 pages a night on most of the remaining nights if he wants to finish the book on time.

Which best describes whether Gary is correct?

A He is correct because $277 \div 9$ is between 30 and 31 .

B He is not correct because $297 \div 9=33$.

C He is correct because $307 \div 10$ is between 30 and 31 .

D He is not correct because $277 \div 10$ is between 27 and 28 .

27 In Vincent's garden, $\frac{1}{6}$ of the flowers are daisies, and $\frac{1}{8}$ of the flowers are snapdragons. Which statements are true? Mark all that apply.

A If he has 10 daisies, then he has 16 flowers in all.
B If he has 8 daisies, then he has 48 flowers in all.
C If he has 14 snapdragons then he has 84 flowers in all.
D If he has 12 snapdragons, then he has 96 flowers in all.

28 Consider the expression shown.

$$
(5 \times 100)+(8 \times 10)+(9 \times 1)+\left(2 \times \frac{1}{10}\right)+\left(6 \times \frac{1}{100}\right)
$$

Part A

What is the value of this expression? Fill in the blank to complete the statement.
Answer $(5 \times 100)+(8 \times 10)+(9 \times 1)+\left(2 \times \frac{1}{10}\right)+\left(6 \times \frac{1}{100}\right)=$ \qquad

Part B

What is one-tenth of the value of this expression? Fill in the blanks to complete each step.

$$
\begin{aligned}
& \frac{1}{10} \times\left[(5 \times 100)+(8 \times 10)+(9 \times 1)+\left(2 \times \frac{1}{10}\right)+\left(6 \times \frac{1}{100}\right)\right]= \\
& 5 \times \ldots+8 \times \ldots+2 \times \ldots+6 \times \ldots
\end{aligned}
$$

Part C

How can you use place value to divide a decimal number by 10? Explain your reasoning.

Part D

Demonstrate how to use place value to divide 142.78 by 10 .

Show your work.

Answer $142.78 \div 10=$ \qquad

29 All parallelograms have two pairs of opposite sides that are parallel and all squares are parallelograms. Using this relationship, which property can you determine is true?

A All squares have two pairs of opposite sides that are parallel.
B All squares have two pairs of opposite sides that are perpendicular.
C All squares have four right angles.
D All squares have four sides that are the same length.

30 Owen has 2 cubic meters of sand. Does he have enough to fill a sandbox with the dimensions shown? (1 meter $=100$ centimeters)

Show your work.

Answer

31 Which is a true statement about the number 19,842?
A The value of the 9 is 10 times the value of the 8 .
B The value of the 4 is 2 times the value of the 8 .
C The value of the 8 is 10 times the value of the 4 .
D The value of the 8 is 20 times the value of the 4 .

32 Tayshaun and Jackie have competing dog-walking services. These line plots show a typical week for each of their services.

Tayshaun's Dog-Walking Service

	X	X					
X	X	X	X				
X							
$\frac{1}{3}$	$\frac{2}{3}$	1	$1 \frac{1}{3}$	$1 \frac{2}{3}$	2	$2 \frac{1}{3}$	$2 \frac{2}{3}$
Miles							

Jackie's Dog-Walking Service

Part A

Who walks more dogs in a week? How many more dogs? Fill in the blanks to complete the sentence.

Answer \qquad walks \qquad more dogs in a week than \qquad .

Part B

Whose service gives more dogs longer walks? FIII in the blanks to complete the sentence.

Answer Tayshaun walks \qquad dogs 2 miles or more and Jackie walks \qquad dogs

2 miles or more. \qquad gives more dogs long walks.

Part C

Complete the following statements.

Answer The total number of miles walked by all the dogs in Tayshaun's dog-walking service during a typical week is \qquad .

In Jackie's service, the dogs walk a total of \qquad miles in a typical week.

33 Which expression is equivalent to $\frac{4}{5} \times 120$?
A $4 \div 5 \div 120$
B $4 \times 120 \div 5$
C $4+120 \div 5$
D $\quad 4 \times 5-120$
E $\quad 5 \times 120+4$
F $\quad 5 \times 4+120$
G $5 \times 120 \times 4$

34 Lines drawn to connect opposite corners of any rectangle are the same length.

Part A

Draw a rectangle with corners at $(0,0),(0,4),(3,4)$, and $(3,0)$ to show this.

Part B

Think about the relationship between squares and rectangles. Does this statement tell you anything about the lines connecting opposite corners of any square? Explain your answer.
\qquad
\qquad
\qquad

35 Which statement best describes the product $\frac{4}{5} \times 10$?
A $\frac{4}{5} \times 10$ must be greater than 10 because $10>1$.
B $\frac{4}{5} \times 10$ must be greater than 10 because $\frac{4}{5}<1$.
C $\frac{4}{5} \times 10$ must be less than 10 because $\frac{4}{5}<1$.
D $\frac{4}{5} \times 10$ must be less than 10 because $10>1$.

36 Mr. Wellington asked his students to compare the products 42.6×10^{2} and 4.26×10^{5}.

Part A

Estimate which product is greater. Explain how you made your estimate.
\qquad
\qquad
\qquad

Part B

Rewrite 4.26×10^{5} as a product of 42.6 and a power of 10 . Fill in the blank to complete the statement.

Answer $4.26 \times 10^{5}=42.6 \times$ \qquad

Part C

Explain how to use place value to compute the product of a number and a power of 10.
\qquad
\qquad
\qquad

Part D

Compute the products.
Answer $42.6 \times 10^{2}=$ \qquad
$4.26 \times 10^{5}=$ \qquad

37 A rectangular bathroom tile is $2 \frac{1}{3}$ times as wide as it is tall. If the tile is $\frac{3}{4}$ centimeters tall, how wide is it?

A $3 \frac{1}{9} \mathrm{~cm}$
B $3 \frac{1}{12} \mathrm{~cm}$
C $\quad 2 \frac{4}{7} \mathrm{~cm}$
D $\quad 1 \frac{3}{4} \mathrm{~cm}$

38 Alberto has 250 cubes with edge lengths of 1 centimeter. Which measurements represent the volume of a rectangular prism that Alberto could fit all of his cubes into? Mark all that apply.

A 256 cubic centimeters
B 248 cubic centimeters
C 236 cubic centimeters
D 260 cubic centimeters

39 Evaluate.

$$
3 \frac{1}{6}+8 \frac{2}{9}-1 \frac{1}{2}
$$

A $9 \frac{8}{9}$
B $9 \frac{7}{10}$
C $9 \frac{2}{3}$
D $\quad 9 \frac{19}{30}$

40 Andre and Molly have a tree fort that consists of two rectangular rooms. The upper level has a length of 5 feet, a width of 3 feet, and a height of 6 feet. The lower level has a length of 7 feet, a width of 4 feet, and a height of 8 feet.

Part A

Which level has a greater volume? How much greater? Fill in the blanks to complete the statement.

Answer The \qquad level has a greater volume by \qquad cubic feet.

Part B

Andre says that the total volume of the tree fort is 314 cubic feet, while Molly says that the total volume is 20,160 cubic feet. Is either Andre or Molly right? Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name \qquad
Teacher Grade

School
City \qquad

Assessment 1

1A. (A) (B) (C) (D)
1B. (A) (B) (C) (D)
2A. (A) (B) (C) (D)
2B. (A) (B) (C) (D)
3. (A) (B) (C) (D)
4. See page 4.
5. See page 5 .
6. (A) (B) (C) (D) (E)

7A. (A) (B) (C) (D)
7B. (A) (B) (C) (D)
8. See page 7 .

9A. (A) (B) (C) (D)
9B. (A) (B) (C) (D)
10. (A) (B) (C) (D)

11A. (A) (B) (C) (D)
11B. (A) (B) (C) (D)
12. See page 11 .
13. (A) (B) (C) (D)
14. (A) (B) (C) (D)

15A. (A) (B) (C) (D)
15B. (A) (B) (C) (D)
16. See page 14.
17. (A) (B) (C) (D)
18. (A) (B) (C) (D)

19A. (A) (B) (C) (D)
19B. (A) (B) (C) (D)
20. See page 17 .
21. See page 18.
22. (A) (B) (C) (D)
23. (A) (B) (C) (D)
24. See page 20.
25. (A) (B) (C) (D)
26. (A) (B) (C) (D)
27. (A) (B) (C) (D)
28. See page 22.
29. (A) (B) (C) (D)
30. See page 23.
31. (A) (B) (C) (D)
32. See page 24.
33. (A) (B) (C) (D) (E) (F) (G)
34. See page 25.
35. (A) (B) (C) (D)
36. See page 27.
37. (A) (B) (C) (D)
38. (A) (B) (C) (D)
39. (A) (B) (C) (D)
40. See page 29.

TEACHER USE ONLY

4. (0) (1) (2) (3) (4)
5. (0) (1)
6. (0) (1) (2) (3)
7. (0) (1) (2) (3)
8. (0) (1) (2) (3)
9. (0) (1) (2) (3)
10. (0) (1)
11. (0) (1) (2) (3)
12. (0) (1) (2) (3) (4)
13. (0) (1) (2) (3)
14. (0) (1) (2) (3) (4) (5) (6)
15. (0) (1) (2) (3)
16. (0) (1) (2) (3) (4)
17. (0) (1) (2) (3)
